Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-Difluoridobis(1,10-phenanthroline)chromium(III) perchlorate monohydrate

Torben Birk,* Jesper Bendix and Högni Weihe

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark Correspondence e-mail: Birk@kiku.dk

Received 5 January 2008; accepted 11 January 2008

Key indicators: single-crystal X-ray study; T = 122 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.146; data-to-parameter ratio = 12.2.

The title complex, $[CrF_2(C_{12}H_8N_2)_2]ClO_4 \cdot H_2O$, displays a slightly distorted octahedral coordination geometry around the central chromium(III) ion. The Cr environment is composed of a cis arrangement of two 1,10-phenanthroline [average $Cr^{III} - N = 2.0726$ (10) Å] and two fluoride [average $Cr^{III}-F = 1.8533$ (6) Å] ligands. The water molecule forms a hydrogen bond to fluorine in a neighbouring cation.

Related literature

For details of the general synthesis of amine-containing difluorido complexes of chromium(III), see: Glerup et al. (1970). For the structure of the analogous 2,2'-bipyridine complex, see: Yamaguchi-Terasaki et al. (2007). For related literature, see: Brenčič et al. (1981, 1987); Delavar & Staples (1981); Kaizaki & Takemoto (1990); Kane-Maguire et al. (1986).

Experimental

Crystal data	
$[CrF_2(C_{12}H_8N_2)_2]ClO_4 \cdot H_2O$ $M_r = 567.87$ Triclinic, $P\overline{1}$ a = 7.6930 (10) Å b = 9.4640 (8) Å c = 16.0610 (17) Å $\alpha = 79.750$ (7)°	$\gamma = 88.115 \ (8)^{\circ}$ $V = 1142.6 \ (2) \ Å^3$ Z = 2 Mo K α radiation $\mu = 0.68 \ \text{mm}^{-1}$ $T = 122 \ (1) \ \text{K}$ $0.44 \times 0.41 \times 0.16 \ \text{mm}$
$\beta = 83.228 \ (12)^{\circ}$	

metal-organic compounds

 $R_{\rm int} = 0.025$

28606 measured reflections

4014 independent reflections

3851 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: Gaussian integration (Coppens, 1970) $T_{\min} = 0.794, T_{\max} = 0.913$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	329 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.41	$\Delta \rho_{\rm max} = 0.79 \text{ e} \text{ Å}^{-3}$
4014 reflections	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cr1-F2	1.8444 (10)	Cr1-N2	2.0607 (15)
Cr1-F1	1.8621 (10)	Cr1-N3	2.0797 (16)
Cr1-N4	2.0566 (15)	Cr1-N1	2.0934 (15)
F2-Cr1-F1	95.92 (5)	N4-Cr1-N3	79.95 (6)
F2-Cr1-N4	92.33 (5)	N2-Cr1-N3	96.36 (6)
F1-Cr1-N4	91.42 (5)	F2-Cr1-N1	170.54 (5)
F2-Cr1-N2	91.83 (6)	F1-Cr1-N1	88.67 (5)
F1-Cr1-N2	91.86 (5)	N4-Cr1-N1	95.83 (6)
N4-Cr1-N2	174.40 (5)	N2-Cr1-N1	79.72 (6)
F2-Cr1-N3	89.38 (5)	N3-Cr1-N1	87.34 (6)
F1-Cr1-N3	170.08 (5)		

Table 2			
Hvdrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5B\cdots F1^{i}$	1.03	1.69	2.7183 (19)	175
	1			

Symmetry code: (i) x - 1, y, z.

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT; data reduction: EvalCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to Mr Flemming Hansen (Centre of Crystallographic Studies, University of Copenhagen) for collection of the X-ray diffraction data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2075).

References

- Brenčič, J. V., Čeh, B. & Leban, I. (1987). Z. Anorg. Allg. Chem. 551, 109-115. Brenčič, J. V., Leban, I. & Polanc, I. (1981). Monatsh. Chem. 112, 1359-1368. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
- Delavar, M. & Staples, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 981-985. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Glerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.

Kaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960-4964.

Kane-Maguire, N. A. P., Wallace, K. C. & Speece, D. G. (1986). Inorg. Chem. **25**, 4650–4654. Nonius (1999). *COLLECT*. Nonius BV, Delft, The Netherlands.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593–m595.

Acta Cryst. (2008). E64, m369-m370 [doi:10.1107/S1600536808001153]

cis-Difluoridobis(1,10-phenanthroline)chromium(III) perchlorate monohydrate

T. Birk, J. Bendix and H. Weihe

Comment

Difluoro complexes of chromium(III) with various amine ligands have received a steady interest in the literature. Areas of interest have been *e.g.* kinetic behavior (Delavar & Staples, 1981), solvatochromism (Kaizaki & Takemoto, 1990) and photochemical/photophysical properties (Kane-Maguire *et al.*, 1986). From a synthetic point of view simple fluoro containing complexes exhibit some advantageous properties for synthesis in non-acidic media. The strong coordination of the small and basic fluoro ligand makes it suitable as an "inorganic" protection group, easily removed and substituted by other ligands. Only a limited number of complexes belonging to this group have been structural characterized *e.g. cis*-[Cr(NH₃)₄F₂]ClO₄

(Brenčič *et al.*, 1981), *cis*-[Cr(en)₂F₂]ClO₄ · NaClOO₄ · H₂O (Brenčič *et al.*, 1987) and *cis*-[Cr(bipy)₂F₂]ClO₄ (Yamaguchi-Terasaki *et al.*, 2007). In this report we present the crystal structure of *cis*-Difluoro(1,10-phenanthroline)chromium(III) perchlorate monohydrate (1).

The structure of (1) shows a octahedral coordination geometry around the central chromium(III) ion consisting of a *cis* arrangment of two fluorine and two nitrogen ligator atoms (Figure 1). Comparison of the Cr—N bond distances in *trans* position relative to the fluoro ligand [N₁: 2.0934 (15) Å and N₃: 2.0797 (16) Å] show a slightly elongation compared to the corresponding in *cis* postion [N₂: 2.0607 (15) Å and N₄: 2.0566 (15) Å]. This pattern of bond lengths are similar to that found in the analogous bipyridine complex *cis*-Difluoro(2,2'-bipyridine)chromium(III) perchlorate, *cis*-[Cr(bipy)₂F₂]ClO₄.

The overall crystal packing is predominately determined by the approximately perpendicular orientation of the two planar 1,10-phenanthroline ligands $[N_3$ —Cr— N_1 :87.34 (6) °, N_3 —Cr— N_2 : 96.36 (6) °] and the presence of crystal water connecting each asymmetric unit with another through hydrogen bonding from water to fluorine (Figure 2).

Experimental

The title complex was synthesized by reflux of *trans*-difluorotetrakis(pyridine)chromium(III) perchlorate and 1,10-phenanthroline in 2-methoxyethanol according to the published method (Glerup *et al.*, 1970).

Crystal suitable for X-ray diffraction were obtained by the following method: 0.208 g of the compound was dissolved in a solution of water/acetonitrile (20 ml/10 ml) and filtered though a filter paper into a small beaker. The beaker was covered with a lid of paper and left undisturbed at room temperature for crystallization (*ca* 3–5 days). The crystals was harvested by gently scratching with a spatula and washed with the mother liquid.

Refinement

All H atoms were identified in a difference Fourier map and incorporated in the refinement in a riding model, with C–H = 0.95 Å and $U_{iso}(H) = 1.2U_{Eq}$.

Figures

Fig. 1. The molecular structure and atom labeling scheme of cis-[Cr(phen)₂F₂]ClO₄· H₂O. Displacement ellipsoids are drawn at 50% probability. H atoms with arbitrary radii.

Fig. 2. The crystal packing in cis-[Cr(phen)₂F₂]ClO₄· H₂O. Displacement ellipsoids are drawn at 50% probability. H atoms except the one originated from cystal water have been omitted.

cis-Difluorido(1,10-phenanthroline)chromium(III) perchlorate monohydrate

Crystal data $[CrF_2(C_{12}H_8N_2)_2]ClO_4 \cdot H_2O$ Z = 2 $M_r = 567.87$ $F_{000} = 578$ $D_{\rm x} = 1.651 \ {\rm Mg \ m^{-3}}$ Triclinic, PT Mo Kα radiation Hall symbol: -P 1 $\lambda = 0.71073 \text{ Å}$ a = 7.6930 (10) ÅCell parameters from 26598 reflections $\theta = 2.3 - 25.0^{\circ}$ b = 9.4640 (8) Å c = 16.0610 (17) Å $\mu = 0.68 \text{ mm}^{-1}$ $\alpha = 79.750 \ (7)^{\circ}$ T = 122 (1) K $\beta = 83.228 \ (12)^{\circ}$ Block, red $\gamma = 88.115 \ (8)^{\circ}$ $0.44 \times 0.41 \times 0.16 \text{ mm}$ $V = 1142.6 (2) \text{ Å}^3$

Data collection

Nonius KappaCCD area-detector diffractometer	4014 independent reflections
Radiation source: fine-focus sealed tube	3851 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 122.0(10) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: gaussian integration (Coppens, 1970)	$h = -9 \rightarrow 9$
$T_{\min} = 0.794, T_{\max} = 0.913$	$k = -11 \rightarrow 11$
28606 measured reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.145$ S = 1.414014 reflections 329 parameters

$\Delta \rho_{max} = 0.79 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.1P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.078$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cr1	0.86046 (3)	0.55137 (3)	0.266315 (15)	0.01130 (17)
Cl1	0.42169 (6)	0.04581 (5)	0.27329 (3)	0.02027 (19)
F1	1.08731 (13)	0.60734 (11)	0.22192 (6)	0.0170 (3)
F2	0.92467 (13)	0.41293 (11)	0.35383 (6)	0.0175 (3)
N1	0.76931 (19)	0.68048 (16)	0.16003 (9)	0.0124 (3)
N3	0.6003 (2)	0.52586 (16)	0.31812 (9)	0.0136 (3)
N4	0.83917 (19)	0.70717 (16)	0.34149 (9)	0.0146 (3)
N2	0.8597 (2)	0.40348 (16)	0.18644 (10)	0.0144 (3)
C12	0.7592 (2)	0.60779 (19)	0.09479 (11)	0.0137 (4)
C1	0.7256 (2)	0.81930 (19)	0.14890 (12)	0.0171 (4)
H1	0.7315	0.8707	0.1942	0.020*
C24	0.5533 (2)	0.61063 (18)	0.37709 (10)	0.0138 (4)
C23	0.6826 (2)	0.70727 (19)	0.39112 (10)	0.0139 (4)
C13	0.4814 (2)	0.43556 (19)	0.30366 (12)	0.0173 (4)
H13	0.5134	0.3751	0.2629	0.021*
C15	0.2655 (2)	0.5115 (2)	0.40692 (12)	0.0197 (4)
H15	0.1510	0.5056	0.4367	0.024*
C11	0.8100 (2)	0.45883 (19)	0.10871 (11)	0.0140 (4)
C10	0.9151 (2)	0.26736 (19)	0.20079 (12)	0.0191 (4)
H10	0.9493	0.2277	0.2551	0.023*
C18	0.4782 (3)	0.7862 (2)	0.50181 (12)	0.0202 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18	0.4531	0.8434	0.5448	0.024*
C22	0.9635 (2)	0.7957 (2)	0.35158 (12)	0.0183 (4)
H22	1.0730	0.7964	0.3173	0.022*
C7	0.8106 (2)	0.3795 (2)	0.04286 (12)	0.0171 (4)
C19	0.6457 (2)	0.79451 (19)	0.45241 (11)	0.0164 (4)
C9	0.9245 (3)	0.1812 (2)	0.13812 (13)	0.0224 (4)
Н9	0.9671	0.0851	0.1497	0.027*
C20	0.7809 (3)	0.8874 (2)	0.46210 (12)	0.0208 (4)
H20	0.7628	0.9482	0.5035	0.025*
C8	0.8722 (3)	0.2354 (2)	0.05988 (13)	0.0212 (4)
H8	0.8771	0.1771	0.0173	0.025*
C3	0.6631 (2)	0.8201 (2)	0.00597 (12)	0.0204 (4)
Н3	0.6278	0.8691	-0.0464	0.024*
C21	0.9360 (3)	0.8881 (2)	0.41136 (13)	0.0231 (4)
H21	1.0260	0.9512	0.4168	0.028*
C17	0.3534 (2)	0.6962 (2)	0.48787 (12)	0.0201 (4)
H17	0.2421	0.6933	0.5207	0.024*
C2	0.6715 (3)	0.8918 (2)	0.07198 (12)	0.0214 (4)
H2	0.6406	0.9908	0.0661	0.026*
C6	0.7569 (2)	0.4481 (2)	-0.03680 (12)	0.0198 (4)
Н6	0.7560	0.3946	-0.0815	0.024*
C5	0.7068 (3)	0.5882 (2)	-0.05005 (12)	0.0205 (4)
Н5	0.6709	0.6311	-0.1035	0.025*
C4	0.7071 (2)	0.6730 (2)	0.01613 (11)	0.0168 (4)
C16	0.3878 (2)	0.6065 (2)	0.42455 (11)	0.0164 (4)
C14	0.3132 (2)	0.4267 (2)	0.34592 (12)	0.0205 (4)
H14	0.2312	0.3630	0.3333	0.025*
O3	0.3942 (2)	-0.10036 (16)	0.26532 (11)	0.0357 (4)
O2	0.5918 (3)	0.0563 (2)	0.29920 (14)	0.0537 (5)
O4	0.2950 (3)	0.0879 (2)	0.33573 (14)	0.0617 (7)
O1	0.4169 (4)	0.1381 (2)	0.19353 (12)	0.0641 (7)
O5	0.1662 (2)	0.87161 (16)	0.12962 (9)	0.0286 (4)*
H5A	0.2568	0.9069	0.1647	0.034*
H5B	0.1306	0.7742	0.1664	0.034*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cr1	0.0102 (2)	0.0141 (2)	0.0097 (2)	-0.00101 (14)	0.00002 (14)	-0.00270 (15)
Cl1	0.0265 (3)	0.0206 (3)	0.0139 (3)	0.0005 (2)	-0.0013 (2)	-0.0043 (2)
F1	0.0123 (5)	0.0210 (6)	0.0168 (6)	-0.0029 (4)	0.0026 (4)	-0.0030 (4)
F2	0.0128 (5)	0.0227 (6)	0.0152 (5)	-0.0009 (4)	-0.0013 (4)	0.0017 (4)
N1	0.0098 (7)	0.0129 (7)	0.0140 (7)	-0.0007 (6)	0.0019 (6)	-0.0029 (6)
N3	0.0110 (7)	0.0157 (7)	0.0139 (7)	-0.0005 (6)	-0.0028 (5)	-0.0011 (6)
N4	0.0136 (8)	0.0185 (8)	0.0117 (7)	-0.0003 (6)	-0.0011 (6)	-0.0024 (6)
N2	0.0140 (8)	0.0136 (8)	0.0154 (8)	-0.0016 (6)	0.0019 (6)	-0.0038 (6)
C12	0.0090 (8)	0.0195 (9)	0.0125 (9)	-0.0024 (7)	0.0010 (7)	-0.0038 (7)
C1	0.0124 (9)	0.0166 (9)	0.0224 (10)	0.0005 (7)	-0.0003 (7)	-0.0051 (7)

C24	0.0128 (9)	0.0153 (8)	0.0114 (8)	0.0024 (7)	-0.0023 (6)	0.0027 (7)
C23	0.0146 (9)	0.0161 (8)	0.0107 (8)	0.0029 (7)	-0.0030 (7)	-0.0010 (7)
C13	0.0182 (9)	0.0174 (9)	0.0164 (9)	-0.0010(7)	-0.0055 (7)	-0.0008 (7)
C15	0.0110 (9)	0.0219 (9)	0.0217 (10)	0.0009 (7)	-0.0006 (7)	0.0073 (7)
C11	0.0102 (8)	0.0181 (9)	0.0139 (9)	-0.0024 (7)	0.0015 (7)	-0.0046 (7)
C10	0.0183 (9)	0.0150 (9)	0.0231 (10)	-0.0012 (7)	-0.0011 (8)	-0.0010 (7)
C18	0.0239 (10)	0.0233 (10)	0.0127 (9)	0.0108 (8)	-0.0020 (7)	-0.0030 (7)
C22	0.0144 (9)	0.0245 (10)	0.0171 (9)	-0.0034 (8)	-0.0022 (7)	-0.0056 (7)
C7	0.0129 (9)	0.0209 (9)	0.0183 (9)	-0.0049 (7)	0.0032 (7)	-0.0080 (7)
C19	0.0206 (10)	0.0170 (9)	0.0113 (9)	0.0027 (7)	-0.0047 (7)	-0.0001 (7)
C9	0.0221 (10)	0.0138 (9)	0.0307 (11)	-0.0008 (8)	0.0029 (8)	-0.0061 (8)
C20	0.0265 (10)	0.0226 (10)	0.0164 (9)	0.0025 (8)	-0.0071 (8)	-0.0097 (7)
C8	0.0193 (10)	0.0206 (10)	0.0249 (10)	-0.0043 (8)	0.0057 (8)	-0.0121 (8)
C3	0.0167 (9)	0.0250 (10)	0.0183 (9)	0.0010 (8)	-0.0031 (7)	0.0000 (8)
C21	0.0255 (11)	0.0230 (10)	0.0242 (10)	-0.0055 (8)	-0.0084 (8)	-0.0082 (8)
C17	0.0149 (9)	0.0244 (10)	0.0168 (9)	0.0086 (8)	0.0036 (7)	0.0030 (7)
C2	0.0206 (10)	0.0162 (9)	0.0268 (10)	0.0016 (8)	-0.0035 (8)	-0.0014 (8)
C6	0.0162 (9)	0.0297 (10)	0.0158 (9)	-0.0030 (8)	0.0006 (7)	-0.0111 (8)
C5	0.0179 (10)	0.0323 (11)	0.0121 (9)	-0.0025 (8)	-0.0020 (7)	-0.0054 (8)
C4	0.0108 (8)	0.0218 (9)	0.0169 (9)	-0.0012 (7)	0.0003 (7)	-0.0017 (7)
C16	0.0124 (9)	0.0183 (9)	0.0152 (9)	0.0042 (7)	-0.0016 (7)	0.0054 (7)
C14	0.0144 (9)	0.0181 (9)	0.0276 (10)	-0.0027 (7)	-0.0079 (8)	0.0033 (8)
O3	0.0323 (9)	0.0276 (8)	0.0520 (10)	-0.0016 (7)	-0.0062 (7)	-0.0190 (7)
O2	0.0472 (12)	0.0437 (10)	0.0732 (13)	-0.0143 (9)	-0.0298 (10)	-0.0008 (10)
O4	0.0711 (15)	0.0491 (11)	0.0621 (13)	-0.0118 (10)	0.0385 (11)	-0.0304 (10)
01	0.111 (2)	0.0517 (12)	0.0274 (10)	0.0159 (12)	-0.0227 (11)	0.0056 (8)

Geometric parameters (Å, °)

Cr1—F2	1.8444 (10)	C11—C7	1.401 (3)
Cr1—F1	1.8621 (10)	С10—С9	1.398 (3)
Cr1—N4	2.0566 (15)	C10—H10	0.9501
Cr1—N2	2.0607 (15)	C18—C17	1.367 (3)
Cr1—N3	2.0797 (16)	C18—C19	1.428 (3)
Cr1—N1	2.0934 (15)	C18—H18	0.9501
Cl1—O4	1.4144 (17)	C22—C21	1.404 (3)
Cl1—O1	1.4200 (18)	С22—Н22	0.9501
Cl1—O2	1.4310 (19)	C7—C8	1.419 (3)
Cl1—O3	1.4365 (15)	C7—C6	1.429 (3)
N1—C1	1.331 (2)	C19—C20	1.423 (3)
N1—C12	1.363 (2)	С9—С8	1.371 (3)
N3—C13	1.339 (2)	С9—Н9	0.9500
N3—C24	1.357 (2)	C20—C21	1.362 (3)
N4—C22	1.335 (2)	С20—Н20	0.9500
N4—C23	1.364 (2)	С8—Н8	0.9500
N2—C10	1.333 (2)	C3—C2	1.365 (3)
N2—C11	1.359 (2)	C3—C4	1.406 (3)
C12—C4	1.401 (3)	С3—Н3	0.9500
C12—C11	1.436 (3)	C21—H21	0.9500

C1—C2	1.404 (3)	C17—C16	1.433 (3)
C1—H1	0.9501	С17—Н17	0.9500
C24—C16	1.403 (3)	С2—Н2	0.9500
C24—C23	1.436 (2)	C6—C5	1.355 (3)
C23—C19	1.393 (3)	С6—Н6	0.9499
C13—C14	1.386 (3)	С5—С4	1.442 (3)
C13—H13	0.9501	С5—Н5	0.9500
C15—C14	1.384 (3)	C14—H14	0.9500
C15—C16	1.407 (3)	O5—H5A	1.0444
C15—H15	0.9500	О5—Н5В	1.0283
?…?	?		
F2—Cr1—F1	95.92 (5)	C7—C11—C12	119.83 (16)
F2—Cr1—N4	92.33 (5)	N2-C10-C9	121.87 (17)
F1—Cr1—N4	91.42 (5)	N2—C10—H10	119.1
F2—Cr1—N2	91.83 (6)	С9—С10—Н10	119.0
F1—Cr1—N2	91.86 (5)	C17—C18—C19	120.56 (17)
N4—Cr1—N2	174.40 (5)	C17—C18—H18	119.6
F2—Cr1—N3	89.38 (5)	C19—C18—H18	119.9
F1—Cr1—N3	170.08 (5)	N4—C22—C21	121.54 (17)
N4—Cr1—N3	79.95 (6)	N4—C22—H22	119.2
N2—Cr1—N3	96.36 (6)	C21—C22—H22	119.3
F2—Cr1—N1	170.54 (5)	C11—C7—C8	116.47 (17)
F1—Cr1—N1	88.67 (5)	C11—C7—C6	119.10 (17)
N4—Cr1—N1	95.83 (6)	C8—C7—C6	124.39 (17)
N2—Cr1—N1	79.72 (6)	C23—C19—C20	116.89 (17)
N3—Cr1—N1	87.34 (6)	C23—C19—C18	119.31 (17)
O4—Cl1—O1	111.05 (15)	C20—C19—C18	123.80 (17)
O4—Cl1—O2	108.77 (15)	C8—C9—C10	119.92 (17)
O1—Cl1—O2	107.61 (15)	С8—С9—Н9	120.0
O4—Cl1—O3	110.09 (11)	С10—С9—Н9	120.1
O1—Cl1—O3	110.47 (12)	C21—C20—C19	119.31 (17)
O2—Cl1—O3	108.78 (11)	С21—С20—Н20	120.5
C1—N1—C12	118.50 (15)	С19—С20—Н20	120.1
C1—N1—Cr1	128.82 (12)	C9—C8—C7	119.61 (18)
C12—N1—Cr1	112.66 (11)	С9—С8—Н8	120.3
C13—N3—C24	118.21 (16)	С7—С8—Н8	120.1
C13—N3—Cr1	129.08 (13)	C2—C3—C4	119.46 (17)
C24—N3—Cr1	112.64 (12)	С2—С3—Н3	120.2
C22—N4—C23	118.54 (16)	С4—С3—Н3	120.3
C22—N4—Cr1	127.53 (13)	C20—C21—C22	120.31 (18)
C23—N4—Cr1	113.65 (12)	C20—C21—H21	119.8
C10—N2—C11	118.64 (16)	C22—C21—H21	119.9
C10—N2—Cr1	127.12 (13)	C18—C17—C16	121.10 (17)
C11—N2—Cr1	113.99 (12)	C18—C17—H17	119.4
N1—C12—C4	122.95 (16)	С16—С17—Н17	119.6
N1—C12—C11	116.89 (15)	C3—C2—C1	120.06 (17)
C4—C12—C11	120.14 (16)	С3—С2—Н2	120.1
N1—C1—C2	121.76 (17)	C1—C2—H2	119.8

N1—C1—H1	119.1	C5—C6—C7	121.37 (17)
C2—C1—H1	119.2	С5—С6—Н6	119.2
N3—C24—C16	123.29 (17)	С7—С6—Н6	119.5
N3—C24—C23	117.20 (16)	C6—C5—C4	120.78 (17)
C16—C24—C23	119.51 (17)	С6—С5—Н5	119.7
N4—C23—C19	123.39 (16)	С4—С5—Н5	119.5
N4—C23—C24	116.13 (16)	C12—C4—C3	117.27 (17)
C19—C23—C24	120.48 (17)	C12—C4—C5	118.77 (17)
N3—C13—C14	122.54 (18)	C3—C4—C5	123.94 (17)
N3—C13—H13	118.9	C24—C16—C15	116.91 (17)
C14—C13—H13	118.6	C24—C16—C17	119.01 (17)
C14—C15—C16	119.58 (17)	C15—C16—C17	124.08 (17)
C14—C15—H15	120.1	C15-C14-C13	119.45 (17)
С16—С15—Н15	120.3	C15-C14-H14	120.1
N2—C11—C7	123.46 (17)	C13-C14-H14	120.4
N2-C11-C12	116.68 (16)	H5A—O5—H5B	101.7
?—?—?—?	?		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O5—H5B…F1 ⁱ	1.03	1.69	2.7183 (19)	175
Symmetry codes: (i) $x-1$, y , z .				

